
OLE 2 Specification: Data Formats for Properties and Property Sets © Microsoft Corporation 1992-1993. All Rights Reserved.

12. Data Formats for Properties and Property Sets

OLE 2 defines a standard structure for a data format capable of representing groups of tagged data values,

known as properties. The standard structure is generic with respect to the semantics of the properties

being represented; it says nothing about what they mean. The standard allows for the ability to create

extensions to sets over time without affecting extant clients of the base set.

Beyond defining a standard structure, OLE 2 defines just one standard property set, the Document

Summary Information set. By storing this information in their storage in the manner outlined below,

applications using Compound Files for their document file formats allow this information about the

contents of their file to be read and understood by generic file browsing tools.120

12.1. What are Properties

Property sets are tagged collections of values, whose meaning is known to the code that manipulates them.

That is to say, the meaning is known as far as that code needs to know it. Generic browsers that do not

modify property sets may not need to know very much of the meaning (schema). Another way to think of

property sets is as a convention for structuring data that can be manipulated or communicated by inde-

pendent pieces of code, some of which are generic, and some of which have specific knowledge of a spe-

cific property set.

Examples of property sets are the character formatting properties in a word processor, or rendering attrib-

utes of an element in a drawing program.

Property sets may be stored (in IStorage/IStream instances) and communicated (through IDataObject and

other interfaces such as the clipboard) in the representation described here. This provides a common rep-

resentation that can be used for an open-ended set of property sets, and enables common code to deal with

them. The representation is partially self-identifying.

All data elements are stored in Intel representation (byte order etc.).

12.2. Document Properties in Storage

Applications may choose to expose some of the state of their documents so that other applications can lo-

cate and read that information. Examples are a property set describing the author, title, and keywords of a

document created with a word processor, or the list of fonts used in a document. This facility is not re-

stricted to documents; it can also be used on embedded objects.

To expose a property set in this manner, the application creates an IStorage or IStream instance in the

same level of the storage structure as its data streams. Names beginning with '\0x05' are reserved for ap-

plications to use for the property sets that they create on their documents for other applications to see. It

follows that the application chooses the names, either from published names and formats, or by creating a

new name, assigning a class identifier and format identifier, and publishing them if so desired. A property

set may be stored in a single stream, or in an IStorage instance which contains multiple streams. In the

latter case, the contained stream named "CONTENTS" is the primary stream containing property values,

where some values may be names of other streams or IStorage instances within the storage for this prop-

erty set.

For a property set that uses an IStorage instance, the application may set the CLSID of the IStorage to be

the same as that stored in the contents stream (see below).

Property set formats are identified by unique identifiers, by analogy to class identifiers and interface iden-

tifiers, and these identifiers are represented and assigned in the same way. A property set may be defined

as an extension of an existing property set, by allocating a new format ID, and allocating property IDs that

120 This is an interim solution. It is currently our intention that longer term a handler-like architecture will be defined for files, enabling the

same sort of interoperable capability for documents not choosing to use Compound Files.

Page: 323

OLE 2 Specification: Data Formats for Properties and Property Sets © Microsoft Corporation 1992-1993. All Rights Reserved.

do not conflict with the base set. The serialized representation includes the base set and the extension, and

both format IDs. This allows readers to skip over unknown extensions, and preserve them, while still ex-

tracting information from the properties that they do know.

12.3. Serialized Format for Property Sets

The stream contains a header, a class identifier, a count of sections (which must be at least one), a table of

format ID and offset for each section, and a series of sections. Each offset is the distance in bytes from the

start of the whole stream where the section begins.

Byte-order

indicator

Format

version

Originating

OS version

Class identifier Count of

sections

(Format ID,

offset) pairs

Section

(repeated)

WORD WORD DWORD CLSID

(16 bytes)

DWORD count * (FMTID

+ DWORD)

variable

0xfffe 0

The OS version number is encoded as OS kind in the high order word (0 for Windows on DOS, 1 for

Macintosh, 2 for Windows NT) and the OS-supplied version number in the low order word. For Windows

on DOS and Windows NT, the latter is the low order word of the result of GetVersion().
The class identifier is that of a class that can display and/or provide programmatic access to the property

values. If there is no such class, the application should set the class ID to be the same as the Format ID

(which is explained in the next section).

A format identifier (FMTID) is represented as a DWORD, two WORDs, and 8 bytes, in sequence.

Sections are tagged with a format identifier. The format identifier is what determines the set of identifiers

in the property set, their meaning, and any constraints on the values. In other words, if the format identi-

fier was known to the author of some piece of code, then he knew how to manipulate this property set. To

allow for extension of property sets over time, while still permitting older clients to access the properties

that they do understand, the values are stored in a sequence of sections, each tagged with a format identi-

fier. Each property set format identifier indicates the meaning of the properties in the section, and suc-

ceeding sections are assumed to be defined as extensions of the preceding one, so that property identifiers

do not conflict. Property set format identifiers should be assigned using the same scheme as class identifi-

ers and interface identifiers.

A section contains a byte count for the section, a count of the property values in the section, an array of

32bit property identifiers and offsets, and an array of property (type, value) pairs. These two arrays are in

corresponding order. Offsets are the distance from the start of the section to the start of the property (type,

value) pair. This allows sections to be copied as blobs.

count of bytes following

in this section

count of

properties

(property ID, offset) pairs type value type, value

repeated

DWORD DWORD count*(DWORD+DWORD) DWORD variable

Property ID zero is reserved in all property sets for an optional dictionary giving human readable names

for the property set itself, and for the properties in the set. The value will be an array of count+1 (property

ID, string) pairs, where the first ID is zero and its corresponding string is the name of the property set,

and the remainder are the IDs and corresponding names of the properties. This dictionary may omit en-

tries for properties that are assumed to be universally known by clients that manipulate the property set.

Typically names for the base property sets for widely accepted standards will be omitted, but extensions or

special purpose sets may include dictionaries for use by browsers etc.

Property ID one is reserved for a code page indicator, which identifies the code page for textual property

values. All values must be stored with the same code page. If the code page indicator is not present, the

prevailing code page on the reader's machine must be assumed.

Page: 324

OLE 2 Specification: Data Formats for Properties and Property Sets © Microsoft Corporation 1992-1993. All Rights Reserved.

Properties may be omitted from the stored set; readers must be robust in this case.

A property (type, value) pair is a DWORD type indicator, followed by a value whose representation de-

pends on the type. Type indicators are and their associated values are defined in the header file variant.h

which is part of the OLE2 developer's kit. The types that are valid in stored property sets are:

Type indicator Code Value Representation
VT_EMPTY 0 none
VT_NULL 1 none
VT_I2 2 WORD
VT_I4 3 DWORD
VT_R4 4 32bit IEEE Floating point
VT_R8 5 64bit IEEE Floating point
VT_CY 6 8 byte two's complement integer (scaled by 10,000), use for currency

amounts
VT_DATE 7 Time format used by many applications: a 64bit floating point number

representing seconds January 1st 1900. This is stored in the same
representation as VT_R8

VT_BSTR 8 Counted, null terminated binary string; represented as a DWORD byte count
(including the terminating null) followed by the bytes of data.

VT_BOOL 11 Boolean value, WORD containing 0 (false) or -1 (true). (N.B this will be zero
padded to 32bit boundary.)

VT_VARIANT 12 a type indicator followed by the corresponding value. This is only used in
conjunction with VT_VECTOR: see below.

VT_I8 20 8 byte signed integer
VT_LPSTR 30 same as VT_BSTR; this is the representation of most strings
VT_LPWSTR 31 A counted and null terminated Unicode string; a DWORD character count

(where the count includes the terminating null) followed by that many Unicode
(16bit) characters. Note that the count is not a byte count.

VT_FILETIME 64 64bit File time structure as defined by Win32
VT_BLOB 65 DWORD count of bytes, followed by that many bytes of data. This is similar

to VT_BSTR but does not guarantee a null byte at the end of the data
VT_STREAM 66 this indicates the value is stored in a stream which is sibling to the

CONTENTS stream Following this type indicator is a VT_LPSTR which
names the stream containing the data

VT_STORAGE 67 this indicates the value is stored in an IStorage which is sibling to the
CONTENTS stream Following this type indicator is a VT_LPSTR which
names the IStorage containing the data

VT_STREAMED_OBJECT 68 as VT_STREAM but indicates that the stream contains a serialized object,
which is a class ID followed by initialization data for the class.

VT_STORED_OBJECT 69 as VT_STORAGE but indicates that the IStorage contains an object
VT_BLOB_OBJECT 70 A BLOB containing a serialized object in the same representation as would

appear in a VT_STREAMED_OBJECT. The only significant difference is
that this type does not have the system-level storage overhead that
VT_STREAMED_OBJECT would have, and is therefore more suitable for
scenarios involving numbers of small objects.

VT_CF 71 A BLOB containing a clipboard format identifier followed by the data in that
format.

VT_CLSID 72 a class ID, which is a DWORD, two WORDs, and 8 bytes
VT_VECTOR 0x1000 if the type indicator is one of the above values with this bit on in addition, then

the value is a DWORD count of elements, followed by that many repetitions
of the value.
As an example, a type indicator of VT_LPSTR|VT_VECTOR has a DWORD
element count, a DWORD byte count, the first string data, a DWORD byte
count, the second string data, and so on.

All type/value pairs begin on a 32bit boundary, which means that in turn, type indicators and values are so

aligned. This means that values may be followed by null bytes to align a subsequent pair.

A clipboard format tag for a VT_CF value is represented as follows. If the format value of the presentation

data is one of the Windows pre-defined clipboard format values then the first field in the above structure

will have -1L and the second field will contain the format number. For Macintosh four-byte clipboard

format tags, the first field is -2L and second field is the tag. Otherwise the format of presentation data is

normally registered via RegisterClipboardFormat. In this case the first field will be the length of the string

and the second field will have the clipboard format name (zero terminated). There are some uses where

the format name is empty. In the case that a property set format identifier is used, it is stored as -3L fol-

lowed by 16 bytes. Thus there are five cases:

Page: 325

OLE 2 Specification: Data Formats for Properties and Property Sets © Microsoft Corporation 1992-1993. All Rights Reserved.

-1L Windows Clipboard format value

Long DWORD

-2L Mac format value

Long DWORD

-3L format identifier

Long DWORD, WORD, WORD, 8 bytes

Length of name Clipboard format name

Long Variable

0L

Long

12.4. Common Property Sets

Given the above representation, it is sufficient to describe a conforming property set representation by

specifying the name of the IStorage or IStream that contains the property set (which begins with '\0x05'),

the class ID in that IStorage, the format identifier and the list of property identifiers and their allowed

types. Optionally, the human-readable names which form the contents of the dictionary may be specified.

12.4.1. Document Summary Information Property Set

The FormatID for the "SummaryInformation" property set is

F29F85E0-4FF9-1068-91AB0-08002B27B3D9.
The stream name should be "SummaryInformation" prepended with the 0x05 (to show that it is a shared

property set). Its Property IDs are as follows:

Property Name PROP_ID PROP_ID Code Type

Title PID_TITLE 0x00000002 VT_LPSTR

Subject PID_SUBJECT 0x00000003 VT_LPSTR

Author PID_AUTHOR 0x00000004 VT_LPSTR

Keywords PID_KEYWORDS 0x00000005 VT_LPSTR

Comments PID_COMMENTS 0x00000006 VT_LPSTR

Template PID_TEMPLATE 0x00000007 VT_LPSTR

Last saved by PID_LASTAUTHOR 0x00000008 VT_LPSTR

Revision number PID_REVNUMBER 0x00000009 VT_LPSTR

Total editing time PID_EDITTIME 0x0000000A VT_FILETIME

Last printed PID_LASTPRINTED 0x0000000B VT_FILETIME

Create Time/Date PID_CREATE_DTM 0x0000000C VT_FILETIME

Last saved Time/Date121 PID_LASTSAVE_DTM 0x0000000D VT_FILETIME

121 Some methods of file transfer (e.g. downloading from BBS) do not maintain the file system's version of this information correctly.

Page: 326

OLE 2 Specification: Data Formats for Properties and Property Sets © Microsoft Corporation 1992-1993. All Rights Reserved.

Number of Pages

Number of Words

Number of Characters

PID_PAGECOUNT

PID_WORDCOUNT

PID_CHARCOUNT

0x0000000E

0x0000000F

0x00000010

VT_I4

VT_I4

VT_I4

Thumbnail PID_THUMBNAIL 0x00000011 VT_CF

Name of Creating Application PID_APPNAME 0x00000012 VT_LPSTR

Security PID_SECURITY 0x00000013 VT_I4

A property whose value is plain text should use VT_LPSTR, not VT_CF with CF representing text. Also

note that an application should choose a single clipboard format for a property's value when using

VT_CF, which carries only one clipboard format.

Property Guidelines:

� Template refers to an external document containing formatting and styling information. The

mechanism by which the template is located is implementation-defined.

� Last Saved By is the Name stored in User Information by the application. For example, suppose Mary

creates a document on her machine and gives it to John, then John modifies and saves it; “Mary” is

the author, “John” is the last saved by value.

� Revision number is the number of times the File / Save command has been performed on this document.

� Create Time / Date is a read-only property: this property should be set when a document is created,

but should not subsequently be changed.

� For PID_THUMBNAIL, applications should store data in CF_DIB or CF_METAFILEPICT format.

� By noting the (suggested; that is, application-enforced) security level on the document, an application

other than the originator of the document can adjust its user interface to the properties appropriately.

An application should not display any of the information about a password protected document, and

should not allow modifications to enforced read-only or locked for annotations documents. It should

warn the user about read-only recommended if the user attempts to modify properties:

Security Level Value

None 0

Password Protected 1

Read-only recommended 2

Read-only enforced 4

Locked for annotations 8

Page: 327

OLE 2 Specification: Appendix A: Registration Database Entries © Microsoft Corporation 1992-1993. All Rights Reserved.

Appendix A: Registration Database Entries

A.1. Syntax

Keys in the registration database are case insensitive; values are case sensitive (although it matters little

for path names and the like). Key names are not localized at all. In fact, very little information here is

localized: only the user type names (all forms) and the verb names. Commas are used to separate values

into individual items. This convention is not localized (just as win.ini keys and values are not localized).

In the example below, {CLSID} is a shorthand for any class id. In reality the numerical value of the

CLSID is put between the {}'s; e.g. {12345678-9ABC-DEF0-C000-000000000046}. All digits are upper

case hex and there can be no spaces. This format is the same as the OSF DCE standard and is the result of

the StringFromCLSID() routine.

Similarly, {IID} is a shorthand for an interface id. StringFromIID() can be used to produce this string.

Other numbers which appear as keys (usually on the left side of an = sign) are always decimal. Numbers

on the right side (values) can be either in decimal or hexadecimal (hex); hex values must be preceded by

0x; e.g., 0xabc123. Negative numbers are always decimal (e.g., -1).

Clipboard formats are represented as a number if the format is built-in to Windows (value < 0xc000) and

as a string if not. The string is translated into a number using RegisterClipboardFormat(). (This number

can be converted back into the string using GetClipboardFormatName().)

A.2. Programmatic Identifiers

Every OLE2 class that belongs in an Insert Object dialog (hereafter termed an “insertable class”) must

have an “programmatic identifier” or ProgID. A ProgID is a string which uniquely identifies a given

class. In addition to being used to determine eligibility for the Insert Object dialog, the ProgID can be used

as an identifier in a “macro” programming language to identify a class. Finally, the ProgID is also the

“classname” used for an OLE2 class when placed in OLE1 containers.

The ProgID string must:

• have no more than 39 characters (i.e.: 39 is OK).

• contain no punctuation (including underscore), with the one exception that it may contain a

single period.

• not start with a digit

• be different from the class name of any OLE1 application, including the OLE1 version of the

same application, if there is one.

CLSIDFromProgID() and ProgIdFromCLSID() can convert back and forth between the two

representations. These functions use the registration database do the conversion.

The ProgID must never be shown to the user in the user interface. If you need a short human-readable

string for an object, call IOleObject::GetUserType(USERCLASSTYPE_SHORT, &szShortName).

See also the “version independent ProgID” at the end of this appendix.

A.3 Insert Object Dialog

Any root key (i.e.: any key immediately under HKEY_CLASSES_ROOT) which has either an “Insertable” or a

“Protocol\StdFileEditing” subkey is the ProgID122 of a class which should be in the Insert Object dialog box.

The value of that root key is the human readable name which is displayed in the dialog.

122 or the OLE1 class name

Page: 329

OLE 2 Specification: Appendix A: Registration Database Entries © Microsoft Corporation 1992-1993. All Rights Reserved.

A.4 Details

When an OLE1 class is inserted for the first time into an OLE2 container, a new subkey “CLSID” is added

by the OLE2 compatibility layer to the OLE1 registration information. The value given to this key is a

CLSID assigned by OLE2 to this OLE1 class.

OLE1ClassName = Ole1UserTypeName
Protocol

StdFileEditing
Verb // etc...

CLSID = {CLSID}

As described above, OLE2 classes which belong in the Insert Object dialog each have a ProgID. The value

of this key is the human readable name which is displayed in the dialog; this should be the same as the

MainUserTypeName of the class; see below. If said class is insertable in an OLE2 container,123 then the

ProgID key must have an immediate subkey “Insertable”; this key must have no value. If said class is

insertable in an OLE1 container, then the ProgID will contain a Protocol\StdFileEditing subkey with

appropriate further subkeys “Verb”, “Server”, etc., as in OLE1. The “Server” that should be registered here

is simply the full path name to the .EXE of the OLE2 application. An OLE1 container will use this to

launch the OLE2 application. The initialization of this application will in turn cause the OLE2

compatibility layer to be loaded. This layer will handle subsequent interactions with the OLE1 container,

turning them into OLE2-like requests to the OLE2 application. Thus, in order to be insertable into an

OLE1 container, the OLE2 application need take no special action beyond setting up these registration

entries.

If the OLE2 application can also handle requests from the Windows 3.1 File Manager, then an appro-

priate place to put the registration information needed to handle this is under the ProgID.

ProgId = MainUserTypeName
Insertable // class is insertable in OLE2 container
Protocol

StdFileEditing // OLE1 compatibility info, present if and only if objects of this
Verb // class are insertable in OLE1 containers.

0 = verb 0
1 = verb 1

Server = path to .exe
RequestDataFormats = format,format,format // NOTE: these formats are strings only124

SetDataFormats = format,format,format // NOTE: these formats are strings only
CLSID = {CLSID} // The corresponding CLSID. Needed by GetClassFile
Shell // Windows 3.1 File Manager Info

Print
...

Open
Command = server.exe %1

.ext = ProgID // used by FileManager and by GetClassFile (and thus FileMonikers)

Unlike OLE1, the bulk of the OLE2 information is not kept under immediate subkeys of HKEY_-
CLASSES_ROOT. Instead, this information is found as subkeys under the “CLSID” subkey of HKEY_CLAS-
SES_ROOT. Significantly for product support, this means that the only classes that are explicitly intended

to be user-visible appear in the non-verbose mode of the registration database editor REGEDIT.EXE.
These Subkeys of “CLSID” are stringized CLSIDs; see StringFromCLSID(). Subkeys of these keys include

indications of where the code that services this class is found; see LocalServer, InprocServer, and InprocHandler.
A good chunk of the information is used by the default OLE2 handler to return various information about

the class when in the loaded state. Examples of this include the Verb, the AuxUserType, and the MiscStatus
entries. A couple of subkeys cross reference the information available under the above-described ProgID.

In particular, the Insertable subkey should be repeated.

123 Since OLE2 provides a built-in OLE1<=>OLE2 compatibility layer, it will be rare that an OLE2 class insertable in an OLE2 container

will not be insertable in an OLE1 container.
124 Unlike in OLE2 data formats, where one can also include numbers for the built-in clipboard formats.

Page: 330

OLE 2 Specification: Appendix A: Registration Database Entries © Microsoft Corporation 1992-1993. All Rights Reserved.

CLSID
{CLSID} = Main User Type Name

LocalServer = path to exe // local (same machine) server; same as Server = above.
InprocServer = path to dll // in process server; relatively rare for insertable classes.
InprocHandler = path to dll // in process handler. Use �ole2.dll� to get default OLE2 handler
Verb // info returned in IOleObject::EnumVerbs(); for example:

verb number = name, menu flags, verb flags
-3 = Hide, 0, 1 // pseudo verb for hiding window; not on menu
-2 = Open, 0, 1 // pseudo verb for opening in separate window; not on menu
-1 = Show, 0, 1 // pseudo verb for showing in preferred state; not on menu
0 = &Edit, 0, 2 // primary verb; often Edit; on menu; possibly dirties object

// MF_STRING | MF_UNCHECKED | MF_ENABLED == 0.
1 = &Play, 0, 3 // other verb; on menu; leaves object clean

AuxUserType // auxiliary user types (main user type above)
form of type = string // See IOleObject::GetUserType(); for example:
2 = ShortName // key 1 should not be used, for the main user type is found above
3 = Application name // contains the human readable name of the application.

// Used when the actual name of the app is needed
// (such as in the Paste Special dialog's result field.
// Example: Acme Draw

MiscStatus = default // def status used for all aspects; see IOleObject::GetMiscStatus()
aspect = integer // exceptions to above; for example:
4 = 1 // DVASPECT_ICON = OLEMISC_RECOMPOSEONRESIZE

DataFormats
GetSet // list of formats for default impl. of EnumFormatEtc;

// very similar to Request/SetDataFormats in OLE1 entries
n = format ,aspect, medium, flag // n is a zero-based integer index;

// format is clipboard format;
// aspect is one or more of DVASPECT_*, -1 for �all�;
// medium is one or more of TYMED_*;
// flag is one or more of DATADIR_*. For example,

0 = 3, -1, 32, 1 // CF_METAFILE = all aspects, TYMED_MFPICT, DATADIR_GET
1 = Biff3, 1, 15, 3 // Microsoft Excel's Biff format, version 3, DVASPECT_CONTENT,

// TYMED_HGLOBAL | TYMED_FILE | TYMED_ISTREAM |
// TYMED_ISTORAGE, (DATADIR_SET | DATADIR_GET)

2 = Rich Text Format, 1,1,3 //
DefaultFile = format // default main file/object format of objects of this class;

// This is examined in TreatAs scenarios by servers in the
// InitNew case to decide what format to write.

Insertable // when present, the class appears in the Insert Object dialog;
// not present for internal classes like the moniker classes.

ProgID = ProgID // the programmatic identifier for this class. See discussion above.
TreatAs = {CLSID} // see CoGetTreatAs()
AutoConvertTo = {CLSID} // see OleGetAutoConvert()
Conversion // Support for Change Type dialog

Readable
Main = format,format,format,format, ...

Readwritable
Main = format,format,format,format, ...

DefaultIcon = path to exe, index // parameters passed to ExtractIcon
Interfaces = {IID}, {IID}, ... // Optional. If this key is present, then its values are the totality of the

// interfaces supported by this class: if the IID is not in this list, then
// the interface is never supported by an instance of this class.

In order to handle two-way compatibility, the OLE2 compatibility layer as it needs to creates OLE2-style

entries for OLE1 classes it discovers. We list this for expository completeness only; no OLE application

should ever write these kind of entries directly.

Page: 331

OLE 2 Specification: Appendix A: Registration Database Entries © Microsoft Corporation 1992-1993. All Rights Reserved.

CLSID
{CLSID} = Ole1UserTypeName // This is an entry auto-generated by OLE2 for an OLE1 class

Ole1Class = OLE1 class name // the first time an object of that class is inserted in a 2.0 container,
ProgId = OLE1 class name // allowing OLE2 to convert {CLSID} back into a 1.0 class name

Finally, a couple of other subkeys of HKEY_CLASSES_ROOT are used. The first of these is FILETYPE, under

which are found the entries used by the GetClassFile() function in to pattern match against various file

bytes in a file. FILETYPE has {CLSID} subkeys, each of which has a series of further subkeys 0, 1, 2, ...

whose values contain a pattern that, if matched, should yield the indicated CLSID.

FileType // used by GetClassFile()
{CLSID}

n = offset, cb, mask, value // offset and cb are limited to 16 bits. offset can be negative for file end.
// As above, offset and byte count are decimal unless preceded by "0x",
// in which case they are hex. The mask and the pattern are always
// hex, and cannot be preceded by "0x".
// Mask can be omitted, implying a value of all ones. An example:

{CLSID}
0 = 0, 4, FFFFFFFF, ABCD1234 // which requires that the first 4 bytes be AB CD 12 34 in that order.
1 = 0, 4, FFFFFFFF, 9876543 // or requires that they match 9876543.
2 = -4, 4, , FEFEFEFE // last four bytes in file must be FEFEFEFE

The second subkey of HKEY_CLASSES_ROOT is INTERFACE. Under subkey this are {IID} keys that contain

a certain small but important amount of information regarding interfaces.

Interface
{IID} = Textual name of interface // e.g.: �IOleObject�

ProxyStubDll = {CLSID} // Used by OLE2 for interprocess communication.
NumMethods = integer // Number of methods in the interface.
BaseInterface = {IID} // Interface from which this was derived. Absence of key means IUnknown.

// Key present but empty value means derived from nothing.
Some applications (mostly applications support OLE Automation) will also wish to register a “version

independent ProgID,” a second ProgID referring to their class, but one that does not change from version

to version but would remain constant over all versions of a given product. This provides a constant name

to be used with macro languages which refers to the currently installed version of the application's class.

VersionIndependentProgID = MainUserTypeName
CLSID = {CLSID} // the class id of the newest installed version of that class
CurVer = ProgID // the ProgID of the newest installed version of that class

Page: 332

OLE 2 Specification: Index © Microsoft Corporation 1992-1993. All Rights Reserved.

Index

A

CreateDataCache, 166 OnClose, 142

CreateFileMoniker, 196 OnDataChange, 162

CreateGenericComposite, 195 OnRename, 141

CreateILockBytesOnHGlobal, 246 OnSave, 141
access modes, 219

createing an instance of a class, 93 OnViewChange, 163
active, 69

CreateItemMoniker, 198 IBindCtx, 190
ADVF, 156, 164

CreateOleAdviseHolder, 144 functions
aggregation, 83

CreatePointerMoniker, 200 EnumObjectParam, 195
Alert Object Table, 174

CreateStreamOnHGlobal, 242 GetBindOptions, 193
alert object table, 209

D

GetObjectParam, 194
application window frame tools, 41

GetRunningObjectTable, 193
Architectural Overview, 57

RegisterObjectBound, 191
artificial reference counts, 84, 126

RegisterObjectParam, 193

B

DATADIR, 155
ReleaseBoundObjects, 191

DEFINE_GUID, 95
RevokeObjectBound, 191

direct mode, 216, 219
RevokeObjectParam, 195

DllCanUnloadNow, 100
BINDFLAGS, 192 SetBindOptions, 191

DllGetClassObject, 99
BindMoniker, 177 IClassFactory

DoDragDrop, 277
BINDOPTS, 191 functions

double-click, 14
BINDSPEED, 198 CreateInstance, 96

double-clicking, 30

C

LockServer, 97
Drag Drop, File Manager, 283

icon metafile, 152
drag scrolling, 50

IDataAdviseHolder, 168
DROPEFFECT, 278

functions
calling conventions, 76 DVASPECT, 148

SendOnDataChange, 169
CALLTYPE, 317 DVTARGETDEVICE, 151

IDataObject, 152
CALLTYPE_ASYNC, 317

E

functions
CALLTYPE_ASYNC_CALLPENDING,

317
DAdvise, 155

DUnadvise, 157
CALLTYPE_NESTED, 317

embedded object model, 44 EnumDAdvise, 157
CALLTYPE_TOPLEVEL, 317

Enumerators EnumFormatEtc, 155
CALLTYPE_TOPLEVEL_CALLPENDI

NG, 317
definition, 85 GetCanonicalFormatEtc, 154

executing, 69 GetData, 153
CF_EMBEDDEDOBJECT, 287

F

GetDataHere, 153
CF_EMBEDSOURCE, 284, 287

QueryGetData, 154
CF_LINKSOURCE, 288

SetData, 154
CF_LINKSRCDESCRIPTOR, 290

IDropSource
CF_OBJECTDESCRIPTOR, 127, 290 FACILITY_DISPATCH, 78

functions
CF_OWNERDISPLAY, 285 FACILITY_ITF, 78

GiveFeedback, 282
CINTERFACE, 76 FACILITY_NULL, 78

QueryContinueDrag, 281
CLSCTX, 95 FACILITY_RPC, 78

IDropTarget
CLSID, 93 FACILITY_STORAGE, 78

functions
CLSID, creating, 95 FAILED, 80

DragEnter, 279
CLSIDFromProgID, 114 FAT, 273

DragLeave, 281
CLSIDFromString, 113 File Manager Drag Drop, 283

DragOver, 280
CoBuildVersion, 91 FILETIME, 183

Drop, 281
CoCreateInstance, 94 floating palettes, 42

IEnum
CoDisconnectObject, 106 FORMATETC, 147, 148

functions
CoDosDateTimeToFileTime, 114 functions

Clone, 87
CoFileTimeNow, 115 lindex, 149

Next, 86
CoFileTimeToDosDateTime, 115 members

Reset, 86
CoFreeAllLibraries, 99 cfFormat, 148

Skip, 86
CoFreeLibrary, 99 dwAspect, 148

IEnumFORMATETC, 155
CoFreeUnusedLibraries, 99 ptd, 148

IEnumMoniker, 180, 209
CoGetClassObject, 95 tymed, 149

IEnumSTATDATA, 157
CoGetCurrentProcess, 92

G

IEnumSTATSTG, 234
CoGetMalloc, 92

definition, 246
CoGetStandardMarshal, 107

IEnumString
CoGetTreatAsClass, 271

GetClassFile, 261 defintion, 87
CoInitialize, 91

GetConvertStg, 272 IEnumUnknown, 133
CoLoadLibrary, 98

GetHGlobalFromILockBytes, 246 defintion, 87
CoLockObjectExternal, 108, 135

GetHGlobalFromStream, 242 IID, creating, 95
CoMarshalHresult, 108

GetRunningObjectTable, 206 IIDFromString, 113
CoMarshalInterface, 105

GetScode, 80 ILockBytes, 216, 226
COMPOBJ.H, 76

H

definition, 243
CoRegisterClassObject, 97

functions
CoRegisterMessageFilter, 109, 316

Flush, 244
CoReleaseMarshalData, 107

LockRegion, 245
CoRevokeClassObject, 98 hatch border, 31

ReadAt, 243
CoTreatAsClass, 270 How to Create an Instance of a Class, 93

SetSize, 244
CoUninitialize, 91 HRESULT, 77

Stat, 245
CoUnmarshalHresult, 108

I

UnlockRegion, 245
CoUnmarshalInterface, 106

WriteAt, 244
CreateAntiMoniker, 200

IMalloc
CreateBindCtx, 195

IAdviseSink, 140, 162 functions
CreateDataAdviseHandler, 169

functions Alloc, 89

Page: 333

OLE 2 Specification: Index © Microsoft Corporation 1992-1993. All Rights Reserved.

DidAlloc, 90 ResizeBorder, 308 functions

Free, 89 TranslateAccelerator, 307 GetWindow, 305

GetSize, 90 IOleInPlaceFrame IParseDisplayName, 197

HeapMinimize, 90 Definition, 310 functions

Realloc, 89 functions ParseDisplayName, 190

IMarshal, 243 EnableModeless, 311 IPersist, 251

functions InsertMenus, 310 functions

Disconnect, 111 RemoveMenus, 311 GetClassID, 251

GetMarshalSizeMax, 111 SetMenu, 311 IPersistFile, 259

GetUnmarshalClass, 109 SetStatusText, 311 functions

MarshalInterface, 110 TranslateAccelerator, 312 GetCurFile, 260

ReleaseMarshalData, 112 IOleInPlaceObject IsDirty, 260

UnmarshalInterface, 111 definition, 306 Load, 259

IMessageFilter, 316 functions Save, 259

functions InPlaceDeactivate, 306 SaveCompleted, 260

HandleIncomingCall, 316 InPlaceUIDeactivate, 306 IPersistStorage, 251

MessagePending, 318 ReactivateAndUndo, 307 functions

RetryRejectedCall, 318 SetObjectRects, 307 HandsOffStorage, 254

IMoniker IOleInPlaceSite InitNew, 251

definition, 175 definition, 312 IsDirty, 253

functions functions Load, 253

BindToObject, 176 CanInPlaceActivate, 312 Save, 252

BindToStorage, 177 DeactivateAndUndo, 314 SaveCompleted, 253

CommonPrefixWith, 184 DiscardUndoState, 314 IPersistStream

ComposeWith, 179 GetWindowContext, 313 functions

Enum, 180 OnDeactivate, 314 GetSizeMax, 257

GetDisplayName, 186 OnInPlaceActivate, 312 IsDirty, 257

GetTimeOfLastChange, 183 OnPosRectChange, 314 Load, 257

Hash, 181 OnUIActivate, 313 Save, 257

Inverse, 184 OnUIDeactivate, 313 IRunningObjectTable

IsEqual, 181 Scroll, 313 functions

IsRunning, 181 IOleInPlaceUIWindow EnumRunning, 209

IsSystemMoniker, 189 Definition, 309 GetObject, 208

ParseDisplayName, 188 functions IsRunning, 208

Reduce, 178 GetBorder, 309 Register, 207

RelativePathTo, 185 RequestBorderSpace, 309 Revoke, 207

in parameter, 88 SetActiveObject, 310 IsEqualCLSID, 113

in-out parameter, 88 SetBorderSpace, 310 IsEqualIID, 113

In-place Interaction, 293 IOleItemContainer IStdMarshalInfo

Insert File..., 283 functions functions

Insert Object, 283 GetObject, 134, 198 GetClassForHandler, 103

instantiation, 69, 93 GetObjectStorage, 134, 199 IStorage

interface IsRunning, 134, 199 definition, 227

definition, 59 IOleLink functions

interface control clipping, 43 functions Commit, 232

IOleAdviseHolder, 140 BindToSource, 204 CopyTo, 230

functions GetBoundSource, 204 CreateDocfile, 228

SendOnClose, 143 GetSourceDisplayName, 203 CreateStream, 227

SendOnRename, 143 GetSourceMoniker, 203 DestroyElement, 235

SendOnSave, 143 GetUpdateOptions, 202 EnumElements, 234

IOleCache, 164 SetSourceDisplayName, 203 MoveElementTo, 231

functions SetSourceMoniker, 202 OpenDocfile, 229

Cache, 164 SetUpdateOptions, 202 OpenStream, 228

EnumCache, 165 UnbindSource, 205 Release, 227

InitCache, 166 Update, 205 RenameElement, 235

SetData, 166 IOleObject Revert, 234

Uncache, 165 functions SetClass, 235

IOleClientSite Advise, 142 SetElementTimes, 235

functions Close, 125 SetStateBits, 236

GetContainer, 131 DoVerb, 122 Stat, 236

GetMoniker, 131 EnumAdvise, 143 IStream, 216, 236

OnShowWindow, 132 EnumVerbs, 124 functions

RequestNewObjectLayout,

132

GetClientSite, 119 Clone, 239

GetClipboardData, 122 Commit, 240

SaveObject, 131 GetExtent, 128 CopyTo, 239

ShowObject, 132 GetMoniker, 120 LockRegion, 240

IOleContainer GetUserClassID, 127 Read, 237

functions GetUserType, 127 Release, 237

EnumObjects, 133 InitFromData, 121 Revert, 240

LockContainer, 134 IsUpToDate, 127, 205 Seek, 238

LockContainer, 134 SetClientSite, 118 SetSize, 239

IOleInPlaceActiveObject SetColorScheme, 130 Stat, 242

Definition, 307 SetExtent, 128 UnlockRegion, 241

functions SetHostNames, 119 Write, 237

ContextSensitiveHelp, 305 SetMoniker, 119 Item Moniker, 182

EnableModeless, 308 Unadvise, 142 IUnknown

OnDocWindowActivate, 308 Update, 126 functions

OnFrameWindowActivate,

308

IOleWindow AddRef, 83

Definition, 305 QueryInterface, 81

Page: 334

OLE 2 Specification: Index © Microsoft Corporation 1992-1993. All Rights Reserved.

Release, 82 OleIsRunning, 135 running object table, 206

IViewObject, 158 OLEIVERB_DISCARDUNDOSTATE,

123

S
functions

Draw, 158 OLEIVERB_INPLACEACTIVATE, 123

Freeze, 161 OLEIVERB_UIACTIVATE, 123
SCODE, 77

GetAdvise, 162 OLELINKBIND, 204
SCODE_CODE, 79

GetColorSet, 160 OleLoad, 255
SCODE_FACILITY, 80

SetAdvise, 161 OleLoadFromStream, 255, 258
SCODE_SEVERITY, 80

Unfreeze, 161 OLEMENUGROUPWIDTHS, 303
SERVERCALL, 317

L

OLEMISC, 129
SERVERCALL_ISHANDLED, 317

OLEMISC_ACTIVATEWHENVISIBLE,

130
SERVERCALL_REJECTED, 317

SERVERCALL_RETRYLATER, 317
OLEMISC_CANLINKBYOLE1, 129, 289

labeled-icon metafile, 152 SetConvertStg, 272
OLEMISC_CANTLINKINSIDE, 129

Link Source Descriptor, 290 shortcut keys, 37
OLEMISC_INSERTNOTREPLACE, 129

Link To File..., 283 show objects option, 30
OLEMISC_INSIDEOUT, 130

linked object model, 44 SNB, 225, 227, 230, 231, 248
OLEMISC_ISLINK, 129

loaded, 69 definition, 248
OLEMISC_ONLYICONIC, 129

Lockcontainer specialization, 26
OLEMISC_RECOMPOSEONRESIZE,

129
keep container running, 134 STATDATA, 158

LOCKTYPE, 241 STATFLAG, 236
OLEMISC_STATIC, 129

M

STATSTG, 236, 246
OleNoteObjectVisible, 135

definition, 247
OleQueryCreateFromClip, 287

STG_E_NOTCURRENT, 233
OleQueryCreateFromData, 140

STG_E_REVERTED, 234
MAKE_SCODE, 80 OleQueryLinkFromClip, 288

STGC, 233
MARSHALNTERFACE_MIN, 106 OleQueryLinkFromData, 140

STGC_DANGEROUSLYCOMMITMER

ELYTODISKCACHE, 233
MEMCTX, 92 OLERENDER, 136

Miscellaneous Functions, 248 OleRun, 134
STGC_ONLYIFCURRENT, 233

MkParseDisplayName, 187 OleSave, 254
STGC_OVERWRITE, 233, 274

MKRREDUCE, 178 OleSaveToStream, 249, 258
StgCreateDocfile, 223

MKRREDUCE_ALL, 178 OleSetAutoConvert, 271
StgCreateDocfileOnILockBytes, 225

MKRREDUCE_ONE, 178 OleSetClipboard, 285
StgIsStorageILockBytes, 248

MKRREDUCE_THROUGHUSER, 178 OleSetContainedObject, 135
StgIsStorgeFile, 248

MKRREDUCE_TOUSER, 178 OleSetMenuDescriptor, 304
STGM, 219

MKSYS, 189 OLESTREAM, 215, 243
STGM_CONVERT, 222

mnemonic keys, 37 OleTranslateAccelerator, 303
STGM_CREATE, 222

moniker, 171 OleUninitialize, 118
STGM_DELETEONRELEASE, 222

MonikerCommonPrefixWith, 185 OLEUPDATE, 202
STGM_DIRECT, 219

MonikerRelativePathTo, 185 OLEVERBATTRIB, 124
STGM_FAILIFTHERE

move pointer, 50 OLEWHICHMK, 121, 131
definition, 222

MSHCTX, 105 opaque, 13
STGM_PRIORITY, 220, 224

multiple selection, 13 open, 69
STGM_READ, 220

N

OpenFile(), 219, 222
STGM_READWRITE, 221

out parameter, 88
STGM_SHARE_DENY_NONE, 222

outside-in activationr ule, 33
STGM_SHARE_DENY_READ, 221

P

NOERROR, 77 STGM_SHARE_DENY_WRITE, 221,

224

O
STGM_SHARE_EXCLUSIVE, 222

pane frame tools, 41 STGM_TRANSACTED, 219

parsing, 187 STGM_WRITE, 221
Object Descriptor, 290

passive, 69 STGMEDIUM, 150
object frame tools, 41

PENDINGMSG, 319 STGMOVE, 232
OBJECTDESCRIPTOR, 288

PENDINGMSG_CANCELCALL, 319 StgOpenStorage, 224
OLE registered verbs, 14

PENDINGMSG_WAITDEFPROCESS,

319

StgOpenStorageOnILockBytes, 226
OLE_E_CLASSDIFF, 204

StgSetTimes, 225
OleBuildVersion, 117

PENDINGMSG_WAITNOPROCESS, 319 STGTY, 247
OLECONTF, 133

PENDINGTYPE, 319 STREAM_SEEK
OleConvertIStorageToOLESTREAM, 264

PENDINGTYPE_NESTED, 319 definition, 238
OleConvertOLESTREAMToIStorage, 263

PENDINGTYPE_TOPLEVEL, 319 STREAM_SEEK_CUR, 238
OleCreate, 136

priority mode, 220 STREAM_SEEK_END, 238
OleCreateDefaultHandler, 144

ProgIDFromCLSID, 114 STREAM_SEEK_SET, 238
OleCreateFromData, 137

PropagateResult, 81 StringFromCLSID, 112
OleCreateFromFile, 138

put-pocketing, 230 StringFromIID, 113
OleCreateLink, 139

R

SUCCEEDED, 80
OleCreateLinkFromData, 139

T

OleCreateLinkToFile, 139

OleCreateMenuDescriptor, 304

OleCreateStaticFromData, 139 ReadClassStg, 254

OleDestroyMenuDescriptor, 305 ReadClassStm, 258 TOC, 273

OleDoAutoConvert, 272 ReadFmtUserTypeStg, 256 transacted mode, 216, 219

OleDraw, 160 ready, 69 transformation, 26

OleDuplicateData, 169 Reference Counting, 83 TYMED, 149

OleFlushClipboard, 286 RegisterDragDrop, 277 type, 19

OleGetAutoConvert, 271 ReleaseStgMedium, 150

U
OleGetClipboard, 285 resize handles, 13

OLEGETMONIKER, 120, 131 ResultFromScode, 80

OleInitialize, 117 RevokeDragDrop, 277
user interface integration, 15

OLEINPLACEFRAMEINFO, 303 running, 69
user model, 11

OleIsCurrentClipboard, 286 Running Object Table, 174

Page: 335

OLE 2 Specification: Index © Microsoft Corporation 1992-1993. All Rights Reserved.

USERCLASSTYPE, 127

UUIDGEN.EXE, 95

W

WriteClassStg, 254

WriteClassStm, 258

WriteFmtUserTypeStg, 255

Page: 336

